Nonanalytic Functions of Absolutely Convergent Fourier Series.

نویسنده

  • W Rudin
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Near - Stability of the Lax - Wendroff Method

In discussing finite difference methods for the solution of hyperbolic par t ia l differential equations, STETrER [1] used est imates on some absolutely convergent Fourier series to prove stabi l i ty and instabi l i ty with respect to uniform convergence. I f / , a complex valued function on the circle, has an absolutely convergent Fourier series, then the n-th power of ] also has an absolutel...

متن کامل

Infinite Type Homeomorphisms of the Circle and Convergence of Fourier Series

We consider the problem of convergence of Fourier series when we make a change of variable. Under a certain reasonable hypothesis, we give a necessary and sufficient condition for a homeomorphism of the circle to transform absolutely convergent Fourier series into uniformly convergent Fourier series.

متن کامل

Positive-definiteness, Integral Equations and Fourier Transforms

We show that positive definite kernel functions k(x, y), if continuous and integrable along the main diagonal, coincide with kernels of positive integral operators in L2(R). Such an operator is shown to be compact; under the further assumption k(x, x) → 0 as |x| → ∞ it is also trace class and the corresponding bilinear series converges absolutely and uniformly. If k1/2(x, x) ∈ L1(R), all these ...

متن کامل

Periodic functions with bounded remainder

Let F be the class of all 1-periodic real functions with absolutely convergent Fourier series expansion and let (xn)n≥0 be the van der Corput sequence. In this paper results on the boundedness of ∑N−1 n=0 f(xn) for f ∈ F are given. We give a criterion on the convergence rate of the Fourier coefficients of f such that the above sum is bounded independently of N . Further we show that our result ...

متن کامل

Algebras of Almost Periodic Functions with Bohr-fourier Spectrum in a Semigroup: Hermite Property and Its Applications

It is proved that the unital Banach algebra of almost periodic functions of several variables with Bohr-Fourier spectrum in a given additive semigroup is an Hermite ring. The same property holds for the Wiener algebra of functions that in addition have absolutely convergent Bohr-Fourier series. As applications of the Hermite property of these algebras, we study factorizations of Wiener–Hopf typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 1955